The generator matrix

 1  0  1  1  1 X^2+X  1  1 X^3+X^2  1  1 X^3+X  1  1  0  1  1 X^2+X  1  1 X^3+X^2  1  1 X^3+X  1  1  0  1  1 X^3+X  1  1 X^2+X  1 X^3+X^2  1  1  1  1  1  1  1  1  1  0 X^3+X^2+X X^2  X  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1 X^3  1  1 X^3
 0  1 X+1 X^2+X X^2+1  1 X^3+X^2 X^3+X^2+X+1  1 X^3+X X^3+1  1  0 X+1  1 X^2+X X^2+1  1 X^3+X^2 X^3+X^2+X+1  1 X^3+X X^3+1  1  0 X+1  1 X^2+X X^3+1  1 X^3+X^2 X^3+X^2+X+1  1 X^2+1  1 X^2+X X^3+X  0 X^3+X^2 X^3+X X+1 X^2+1 X^3+X^2+X+1 X^3+1  1  1  1  1 X^3 X^3+X^2+X X^2  X X^3 X^3+X^2+X X^2  X X^3 X^3+X^2+X X^2  X X^3 X^3+X^2+X X^2  X X^3+X+1 X^3+X^2+1 X^2+X+1  1 X^3+X+1 X^3+X^2+1 X^2+X+1  1 X^3+X+1 X^3+X^2+1 X^2+X+1  1  1 X^3+X+1 X^3+X^2+1  1
 0  0 X^3  0 X^3  0 X^3  0 X^3 X^3  0 X^3  0  0  0 X^3  0  0 X^3 X^3 X^3  0 X^3 X^3 X^3  0 X^3  0 X^3  0  0  0 X^3 X^3  0 X^3  0 X^3  0 X^3 X^3  0 X^3  0 X^3 X^3  0  0 X^3 X^3  0  0 X^3 X^3  0  0  0  0 X^3 X^3  0  0 X^3 X^3 X^3 X^3  0  0 X^3 X^3  0  0  0  0 X^3 X^3 X^3  0  0  0
 0  0  0 X^3 X^3 X^3 X^3  0  0  0 X^3 X^3 X^3 X^3 X^3 X^3  0  0  0 X^3 X^3  0  0  0 X^3  0  0  0 X^3 X^3 X^3 X^3 X^3  0  0  0 X^3  0  0 X^3 X^3 X^3  0  0 X^3  0 X^3  0  0 X^3 X^3  0 X^3  0  0 X^3 X^3  0  0 X^3  0 X^3 X^3  0  0 X^3 X^3  0 X^3  0  0 X^3 X^3  0  0 X^3  0  0 X^3 X^3

generates a code of length 80 over Z2[X]/(X^4) who�s minimum homogenous weight is 78.

Homogenous weight enumerator: w(x)=1x^0+132x^78+96x^79+564x^80+96x^81+132x^82+1x^96+1x^100+1x^124

The gray image is a linear code over GF(2) with n=640, k=10 and d=312.
This code was found by Heurico 1.16 in 0.968 seconds.